metric grey part, the symmetry of the former being represented by a certain black-and-white space group. In such a case Friedel's law breaks down.

In a structure as treated in the present paper, the black and white vectors as a whole form a complete 'grey' set as in a centrosymmetric crystal. In fact, if Friedel's law holds, P_{s} must vanish over the entire range of \mathbf{u}, and this means that each black vector must have its own white mate with the same magnitude and direction and sense. Such a circumstance can be seen, for example, by inspection of Figs. 1 and 2. In summarizing, Friedel's law holds for any crystal involving two kinds of anomalous scatterers, if the symmetry of a black-and-white vector set as defined above is represented by a certain 'grey' space group.

Conclusion

It has been shown that Friedel's law may hold in certain non-centrosymmetric structures other than crystals of elements, even with the anomalous dispersion. For such a crystal, if one exists, the absolute configuration cannot be determined by the conventional X-ray absorption-edge techniques. The point group of such a crystal cannot be detected by a statistical treatment of intensity differences between possible Bijvoet pairs (Ibers, 1967). No structure of this type seems so far to have been recorded, though one may be found in future.

It should be noted that the condition (6-3) is always satisfied for reflexions with some special indices, if the $x y z$ parameters of all atoms, as well as the three components of \mathbf{u}, are certain rational fractions of the cell
edges. For example, the well known zinc-blende structure (space group $F \overline{4} 3 \mathrm{~m}$) consists of two geometrically identical substructures with $\mathbf{u}=\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$. Thus, the relation ($6-3$) holds if indices $h k l$ are all even. The centric intensity distribution in these reflexions, in part, arises entirely from the special arrangement of atoms or of substructures. A partial Friedel's law of this type, not as a result of the space-group symmetry, is quite common in a number of crystals of inorganic compounds.

In connexion with this it should be added also that Friedel's law may hold to a very good approximation in several non-centrosymmetric molecular crystals. Practically this problem is sometimes important. Consider a crystal containing atoms of a large atomic number and non-anomalous light atoms. When the heavy atoms are arranged with a certain kind of symmetry higher than that of the crystal, they contribute only to reflexions with certain special indices according to the local symmetry. In such a case, these reflexions often exhibit pseudocentric patterns owing to the large contribution of heavy atoms to diffracted intensities, whereas other reflexions show partially centrosymmetric diffraction patterns. In a 'pseudo-Friedel' case of this type, some difficulties may occur in the determination of the absolute configuration.

References

Chandrasekaran, K. S. (1968). Acta Cryst. A24, 248249.

Ibers, J. A. (1967). Acta Cryst. 22, 604-605.
Iwasaki, H. (1972). Acta Cryst. A28, 253-260.
Okaya, Y., Salto, Y. \& Pepinsky, R. (1955). Phys. Rev. 98, 1857-1858.
Sadanaga, R. \& Ohsumi, K. (1974). To be published.

Acta Cryst. (1974). A30, 176

Systematic Errors in Polarization Corrections for Crystal-Monochromatized Radiation

By K. Ann Kerr and J. Patrick Ashmore
Departments of Physics and Chemistry, The University of Calgary, Calgary, Alberta, Canada

(Received 29 May 1973; accepted 15 August 1973)

Abstract

The polarization expressions for crystal-monochromatized radiation have been evaluated for both molybdenum and copper radiations under a variety of conditions in order to show the magnitude of the systematic error introduced by the use of an inappropriate expression. The effect of the polarization expression on the extinction correction is also discussed.

The expression for the polarization correction for crys-tal-monochromatized radiation is well known for the case of the double-crystal spectrometer. In this geometry, hereinafter referred to as 'normal' geometry, the monochromator crystal lies in the equatorial plane of a three- or four-circle diffractometer with its rotation axis perpendicular to the equatorial plane. The beam incident on the monochromator crystal is randomly polarized and thus can be represented as the sum of two
equal components polarized parallel $\left(\chi=90^{\circ}\right)$ and perpendicular $\left(\chi=0^{\circ}\right)$ to the equatorial plane of the diffractometer. The relative intensities of the components are:

$$
I_{\mathrm{n}}=I_{\perp}=\frac{1}{2} I_{0} .
$$

Since the intensity of radiation diffracted in a particular direction is proportional to $\sin ^{2} \varphi$, where φ is the angle between the electric vector and the direction of ob-
servation, it follows that the relative intensities of the two components after reflexion at an angle of θ_{m} from the monochromator crystal will be $I_{\|}=\frac{1}{2} I_{0} \sin ^{2}(90-$ $\left.2 \theta_{m}\right)=\frac{1}{2} I_{0} \cos ^{2} 2 \theta_{m}$ and $I_{\perp}=\frac{1}{2} I_{0} \sin ^{2} 90^{\circ}=\frac{1}{2} I_{0}$. In this geometry the component that was attenuated by reflexion from the monochromator crystal is attenuated again by reflexion from the sample crystal so that the polarization correction for the twice-reflected beam becomes

$$
\begin{equation*}
p=\frac{1+\cos ^{2} 2 \theta_{m} \cos ^{2} 2 \theta}{1+\cos ^{2} 2 \theta_{m}} \tag{1}
\end{equation*}
$$

This expression applies only when the monochromator crystal is mounted with its axis of rotation perpendicular to the equatorial plane of the diffractometer so that the incident beam, the beam reflected by the mono-

Fig. 1. Plot of $1 / p$ for quartz or graphite with Cu radiation. Picker geometry; imperfect crystal -O-O- Picker geometry; perfect crystal - - . 'Normal' geometry; imperfect crystal -○—○—○—.
chromator and the beam reflected by the sample crystal all lie in the same plane.

In many diffractometers, these conditions do not obtain. In one of the more common designs, first available on the Picker diffractometer, the incidentbeam monochromator crystal is mounted with its rotation axis parallel to the equatorial plane. The actual radiation source lies above that plane. In the reflexion from the monochromator crystal the component of the beam normal to the equatorial plane ($\chi=0^{\circ}$) is attenuated by the factor $\cos ^{2} 2 \theta_{m}$. The parallel ($\chi=90^{\circ}$) component is attenuated by reflexion from the sample. For this geometry, hereinafter referred to as Picker geometry, the correct expression for the polarization factor is (Azároff, 1955)

$$
\begin{equation*}
p=\frac{\cos ^{2} 2 \theta_{m}+\cos ^{2} 2 \theta}{1+\cos ^{2} 2 \theta_{m}} \tag{2}
\end{equation*}
$$

In these two equations for the polarization correction it is assumed that both the monochromator crystal and the sample crystal are ideally imperfect with diffracted intensity proportional to F^{2}. This is probably a reasonable approximation if the monochromator is a single crystal of graphite, but a rather poor approximation in the case of quartz or LiF. When the monochromator crystal approximates to a perfect crystal, a more appropriate expression would be

$$
\begin{equation*}
p=\frac{1+\left|\cos 2 \theta_{m}\right| \cos ^{2} 2 \theta}{1+\left|\cos 2 \theta_{m}\right|} \tag{3}
\end{equation*}
$$

for 'normal' geometry, (Arndt \& Willis, 1966), or

$$
\begin{equation*}
p=\frac{\left|\cos 2 \theta_{m}\right|+\cos ^{2} 2 \theta}{1+\left|\cos 2 \theta_{m}\right|} \tag{4}
\end{equation*}
$$

in the case of the Picker diffractometer.
Table 1 shows the value of $1 / p$ as a function of 2θ

Table 1. Values of $1 / p$ as a function of 2θ for Mo (upper line) and Cu (lower line) radiations

$2 \theta\left({ }^{\circ}\right)$	Quartz or graphite				LiF			
	Normal Imperfect	Picker Imperfect	Normal Perfect	Picker Perfect	Normal Imperfect	Picker Imperfect	Normal Perfect	Picker Perfect
10	1.014956	1.015660	1.015132	1.015484	1.014314	1.016303	1.014810	1.015806
	1.013581	1.017041	1.014441	1.016176	1.010154	1.020514	1.012649	1.017981
20	1.060629	1.063620	1.061375	1.062871	1.057917	1.066362	1.060013	1.064240
	1.054829	1.069517	1.058452	1.065818	1.040578	$1 \cdot 084578$	1.050923	1.073563
30	$1 \cdot 139169$	$1 \cdot 146569$	$1 \cdot 141010$	$1 \cdot 144710$	$1 \cdot 132504$	$1 \cdot 153401$	$1 \cdot 137652$	$1 \cdot 148110$
	$1 \cdot 124971$	$1 \cdot 161321$	$1 \cdot 133816$	$1 \cdot 152044$	1.090917	$1 \cdot 199990$	$1 \cdot 115520$	$1 \cdot 171568$
40	$1 \cdot 252986$	$1 \cdot 267860$	$1 \cdot 256671$	1-264109	1.239723	$1 \cdot 281736$	$1 \cdot 249955$	$1 \cdot 270979$
	$1 \cdot 224883$	1-297994	$1 \cdot 242322$	$1 \cdot 278969$	$1 \cdot 159738$	$1 \cdot 380147$	$1 \cdot 206490$	$1 \cdot 319308$
50	$1 \cdot 402058$	1.428696	$1 \cdot 408623$	1.421943	$1 \cdot 378618$	$1 \cdot 453886$	$1 \cdot 396676$	$1 \cdot 434329$
	$1 \cdot 352734$	1.483828	$1 \cdot 383190$	1.448836	$1 \cdot 243200$	$1 \cdot 642576$	$1 \cdot 321142$	1.523798
60	1.578537	1.622054	1.589195	1.610953	1.540839	$1 \cdot 663886$	1.569832	$1 \cdot 631350$
	1.499844	1.714489	1.548148	1.655445	$1 \cdot 333370$	1.999919	$1 \cdot 450687$	1.783576
70	1.759033	1.823208	1.774647	1.806731	1.704326	1.885954	1.746328	1.837061
	1.645746	1.963284	1.714870	1.873209	1.417163	2.431063	1.576722	2.071462
80	1.900903	1.983780	1.920963	1.962393	1.831138	2.065921	1.884628	2.001820
	1.757325	$2 \cdot 168693$	1.844522	2.049147	1.477778	2.829156	1.671508	$2 \cdot 315395$
90	1.955682	2.046373	1.977590	2.022924	1.879713	2.136735	1.937930	2.066178
	1.799701	2.250467	1.894260	$2 \cdot 118243$	$1 \cdot 500061$	$2 \cdot 999756$	1.707150	$2 \cdot 414127$

for three different monochromators and two radiations. A comparison of values shows that very large systematic errors can be introduced by using an inappropriate expression for the polarization correction. For instance, if the 'normal' equation (1) were used in place of the Picker expression (2) for $\mathrm{Cu} K \alpha$ with a graphite monochromator, the maximum error introduced would be of the order of 20% in F^{2}. This error would be of the order of 10% for a quartz monochromator if equation (3) were used in place of (4). Fig. 1 is a graphical comparison of the expressions for 'normal' and Picker geometry for $\mathrm{Cu} K \alpha$ radiation and a monochromator angle of $2 \theta_{m}=26 \cdot 6^{\circ}$, typical of graphite or quartz. In the case of a LiF crystal, the larger monochromator angle ($2 \theta_{m}=45 \cdot 0^{\circ}$) makes discrepancies between the expressions even larger. As can be seen in Fig. 2, the maximum error introduced by use of the wrong geometry is 50% in F^{2} for a LiF monochromator.

In these comparisons we have assumed that monochromators diffract as ideal crystals, although the literature clearly shows this assumption to be false (Miyake, Togawa \& Hosoya, 1964; Jennings, 1968; Hope, 1971). Fig. 3 shows how important it is to have some information about the actual degree of perfection of the crystal. In the case of LiF and copper radiation, the ratio $p_{\text {perf }} / p_{\text {imp }}$ for a particular reflexion can be as high as $1 \cdot 24$. In the case of quartz or graphite, the effect is substantially smaller, but still significant for copper radiation. However, with molybdenum radiation the effect will be negligible for most experiments since the difference between the polarization corrections at $2 \theta=60^{\circ}$ is only about 3% for LiF and about 1% for quartz or graphite with Picker geometry.

It should be noted that the calculation of an extinction parameter assumes some functional form for the polarization correction. Zachariasen \dagger (1963) has shown that

$$
\begin{equation*}
F_{\mathrm{corr}}=K F_{\mathrm{obs}}\left[1+\beta(2 \theta) C J_{\mathrm{obs}}\right] \tag{Z.14}
\end{equation*}
$$

where $\beta(2 \theta)$ is an expression for the angular variation of the extinction parameter and contains the factor P_{2} / P_{1}^{2}. This ratio has the form

$$
\frac{M+N \cos ^{2} 2 \theta}{(M+N)^{2}}
$$

where M is the polarization factor for the component of the beam perpendicular to the equatorial plane of the diffractometer and N is the corresponding factor for the parallel component. For filtered radiation, $M=\frac{1}{2}$ and $N=\frac{1}{2} \cos ^{2} 2 \theta$ and

$$
\begin{equation*}
\beta(2 \theta)=\frac{2\left(1+\cos ^{4} 2 \theta\right)}{\left(1+\cos ^{2} 2 \theta\right)^{2}} \cdot \frac{A^{*^{\prime}(2 \theta)}}{A^{*^{\prime}}(0)} . \tag{Z.15}
\end{equation*}
$$

\dagger Equations taken from Zachariasen (1963) are indicated by the letter \mathbf{Z} preceeding the equation number used in that paper.

When a monochromator is used with 'normal' geometry

$$
M=\frac{\cos ^{2} 2 \theta_{m} \cos ^{2} 2 \theta}{\left(1+\cos ^{2} 2 \theta_{m}\right)} ; \quad N=\frac{1}{1+\cos ^{2}} \overline{2 \theta_{m}} ;
$$

and

$$
\beta(2 \theta)=\frac{\left(1+\cos ^{2} 2 \theta_{m}\right)\left(\frac{\left.1+\cos ^{2} 2 \theta_{m} \cos ^{4} 2 \theta\right)}{\left(1+\cos ^{2}\right.} 2 \theta_{m} \cos ^{2} 2 \bar{\theta}\right)^{2}}{A^{*^{\prime}}(2 \theta)} A^{A^{* \prime}(0)} .
$$

In these expressions $A^{*}(2 \theta)$ is the value of $\mathrm{d} A^{*} / \mathrm{d} \mu$ at $2 \theta, A^{* \prime}(0)$ is the value at $2 \theta=0$ and A^{*} is the absorption factor, A^{-1}.

Fig. 2. Plot of $1 / p$ for LiF with Cu radiation. Picker geometry; imperfect crystal - - - - . Picker geometry; perfect crystal - - - - 'Normal' geometry; imperfect crystal $-\mathrm{O}-\mathrm{O}-\mathrm{O}$.

Fig. 3. The ratio of polarization factors for Picker geometry $\begin{array}{llll}P^{-1} & \text { imperfect } / P^{-1} & \text { perfect. } \mathrm{LiF} & \text { and } \\ \mathrm{Cu} & \text { radiation } \\ \end{array}$

Table 2. A comparison of the various functional forms of $\beta(2 \theta)$ for both Mo (upper line) and Cu (lower line) radiations

	Quartz or graphite					LiF				
$2 \theta\left({ }^{\circ}\right)$	Filter	Normal Imperfect	Picker Imperfect	Normal Perfect	Picker Perfect	Filter	Normal Imperfect	Picker Imperfect	Normal Perfect	Picker Perfect
10	1.000234	$1 \cdot 000234$	1.000234	$1 \cdot 000234$	1.000234	$1 \cdot 000234$	$1 \cdot 000233$	$1 \cdot 000234$	1.000234	$1 \cdot 000234$
	1.000234	$1 \cdot 000231$	1.000232	$1 \cdot 000233$	1.000234	$1 \cdot 000234$	$1 \cdot 000206$	$1 \cdot 000210$	$1 \cdot 000226$	$1 \cdot 000229$
20	1.003859	$1 \cdot 003846$	$1 \cdot 003868$	1.003853	1.003864	1.003859	$1 \cdot 003813$	$1 \cdot 003874$	1.003840	$1 \cdot 003871$
	1.003859	1.003759	1.003865	1.003821	1.003874	1.003859	$1 \cdot 003293$	1.003577	1.003667	1.003827
30	1.020408	$1 \cdot 020266$	$1 \cdot 020530$	1.020340	1.020472	$1 \cdot 020408$	1.019958	1.020701	1.020202	$1 \cdot 020575$
	1.020408	1.019529	$1 \cdot 020812$	1.020024	1.020673	1.020408	$1 \cdot 016530$	1.020000	$1 \cdot 018871$	$1 \cdot 020815$
40	1.067797	1.066970	1.068569	1.067390	1.068190	1.067797	$1 \cdot 065325$	1.069827	$1 \cdot 066612$	1.068872
	1.067797	1.063239	1.071014	1.065663	1.069594	1.067797	$1 \cdot 051026$	$1 \cdot 072265$	1.060296	1.072099
50	$1 \cdot 172434$	$1 \cdot 169147$	$1 \cdot 175636$	$1 \cdot 170801$	$1 \cdot 174046$	$1 \cdot 172434$	$1 \cdot 162953$	$1 \cdot 181232$	$1 \cdot 167765$	$1 \cdot 176932$
	1-172434	$1 \cdot 155585$	$1 \cdot 187202$	1-164196	1-180152	1-172434	$1 \cdot 118278$	$1 \cdot 206477$	$1 \cdot 145842$	$1 \cdot 194016$
60	$1 \cdot 360000$	$1 \cdot 350227$	1.369803	$1 \cdot 355108$	1.364899	$1 \cdot 360000$	$1 \cdot 332502$	$1 \cdot 387728$	$1 \cdot 346197$	$1 \cdot 373862$
	1.360000	$1 \cdot 312422$	$1 \cdot 408243$	1.335995	1.384182	$1 \cdot 360000$	$1 \cdot 222243$	1.499980	$1 \cdot 287235$	1.434184
70	1.624962	1.602848	1.647638	1.613835	1.636230	1.624962	1.563905	1.690499	1.593867	1.657180
	1.624962	1.521429	$1 \cdot 742055$	$1 \cdot 571465$	1.681868	1.624962	$1 \cdot 348007$	$2 \cdot 024096$	1.470350	1.811830
80	1.886342	1.849263	1.924931	1.867617	1.905445	1.886342	1.785246	1.999519	1.834356	$1 \cdot 941347$
	1.886342	1.717194	2.092267	1.797549	1.984320	1.886342	1.456488	$2 \cdot 673110$	1.637662	2.223556
90	$2 \cdot 000000$	1.955682	$2 \cdot 046373$	1.977590	$2 \cdot 022924$	$2 \cdot 000000$	$1 \cdot 879713$	2.136735	1.937930	$2 \cdot 066178$
	$2 \cdot 000000$	1.799701	$2 \cdot 250467$	1.894260	2.118243	$2 \cdot 000000$	$1 \cdot 500061$	$2 \cdot 999756$	$1 \cdot 707150$	$2 \cdot 414127$

In the case of the Picker monochromator

$$
M=\frac{\cos ^{2} 2 \theta_{m}}{1+\cos ^{2} 2 \theta_{m}} ; \quad N=\frac{\cos ^{2} 2 \theta}{1+\cos ^{2} 2 \theta_{m}} ;
$$

and

$$
\begin{equation*}
\beta(2 \theta)=\frac{\left(1+\cos ^{2} 2 \theta_{m}\right)\left(\cos ^{2} 2 \theta_{m}+\cos ^{4} 2 \theta\right)}{\left(\cos ^{2} 2 \theta_{m}+\cos ^{2} 2 \theta\right)^{2}} \cdot \frac{A^{*^{\prime}(2 \theta)}}{A^{* \prime}(0)} \cdot \tag{5}
\end{equation*}
$$

The corresponding expressions for a perfect monochromator crystal can be obtained by substituting $\left|\cos 2 \theta_{m}\right|$ for $\cos ^{2} 2 \theta_{m}$.

The angular parts of these expressions have been evaluated. The results are presented in Table 2. It is clear that the differences are small for a graphite or quartz monochromator, but can become quite large in the case of copper radiation and a LiF crystal.

In summary, we have shown that very large systematic errors can arise through failure to consider the geometry of the monochromator or the state of per-
fection of the monochromator crystal. For molybdenum radiation and a monochromator with a small diffraction angle, θ_{m}, the magnitude of the errors is small. However, if copper radiation is used, or if the monochromator has a large diffraction angle, as in the case of LiF, the error introduced by use of an inappropriate expression is too large to be ignored.

This work was supported by NRC grant A-5881.

References

Arndt, U. W. \& Willis, B. T. M. (1966). Single Crystal Diffactometry, pp. 284-291. Cambridge Univ. Press.
Azároff, L. V. (1955). Acta Cryst. 8, 710-704.
Hope, H. (1971). Acta Cryst. A27, 392-393.
Jennings, L. D. (1968). Acta Cryst. A24, 472-474.
Miyake, S., Togawa, S. \& Hosoya, S. (1964). Acta Cryst. 17, 1083-1084.
Zachariasen, W. H. (1963). Acta Cryst. 16, 1139-1 144.

